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Steady entry flow in a curved pipe 
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Laser-Doppler velocity measurements were performed on the entry flow in a 90" bend 
of circular cross-section with a curvature ratio a / R  = 1/6. The steady entry velocity 
profile was parabolic, having a Reynolds number Re = 700, with a corresponding 
Dean number K = 286. Both axial and secondary velocities were measured, enabling 
a detailed description of the complete flow field. The secondary flow at the entrance 
of the bend was measured to be directed completely towards the inner bend. 
Significant disturbance of the axial velocity field was not measured until a down- 
stream distance (&)$. Maximum secondary velocities were measured at 1.7 (aR)t 
downstream from the inlet. The development of the axial flow field can be quite well 
explained from the secondary velocity field. 

1. Introduction 
Detailed analysis of the developing fluid flow in bends has been strongly stimulated 

by improved numerical and experimental methods. Moreover the subject is relevant 
for the understanding of blood flow in the human arterial system. A recent overview 
of the results of previous investigations concerning the stationary entry flow in a bend 
has been given by Soh C Berger (1984). Theoretical studies have been performed by 
Hawthorne (1951) and Smith (1976). Numerical investigations have been carried out 
by Singh (1974), Yao & Berger (1975), Stewartson, Cebeci & Chang (1980) and Soh 
& Berger (1984). Experimental analyses were made by Olson (1971), Agrawel, Talbot 
& Gong (1978), Choi, Talbot & Cornet (1979) and Olson & Snyder (1985). Most of 
these investigations deal with uniform entry flow where, immediately after the entry 
into the bend, a secondary flow is set up, which is dominated by the build-up of an 
axial boundary layer. Further downstream two helical vortices develop as a result 
of the interaction of inertial, centrifugal and viscous forces. The case of the 
development from a parabolic entry velocity profile in a situation of relative high 
curvature has been studied by Olson (1971). He presented only the development of 
the axial velocity field in the plane of symmetry of the bend. 

The present study was carried out in the context of a project in which the flow 
pattern in the human carotid bifurcation is investigated. The blood flow in the main 
branch of this bifurcation, the internal carotid artery, may be partly considered as 
the entry flow in a bend (Olson 1971). Owing to the long straight artery between the 
aorta and the bifurcation the flow at the inlet of the bifurcation is assumed to be 
fully developed. As a first step in the investigation of the flow in the bifurcation, the 
steady flow development from a parabolic entry profile in a bend of relative high 
curvature ratio is experimentally investigated. Both axial and secondary velocity 
profiles, measured at several cross-sections in the bend, will be presented in this paper. 
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(4 (4 
FIQURE 1. (a) The 90" bend. (b) The flow system with reservoir r, gear pump p, inlet section i, bend 
b, rotameter rm and temperature control T. (c) Coordinates in the bend. (d) Measuring grid and 
calculation grid. 

2. Experimental procedure 
The model in which the experiments were performed consisted of two halves of 

Perspex, split a t  the plane of symmetry, in which a 90" bend was machined out (figure 
1 a) .  It had an internal radius of 4.0 mm and a radius of curvature of 24.0 mm, yielding 
a curvature ratio 6 = a / R  of 1/6. The outer surfaces of the model were chosen in such 
a way that the three velocity components in the hereafter defined 2-, y- and 
z-directions could be measured with the optical axis of a laser-Doppler anemometer 
employed perpendicular to the outer surface. The bend was placed in a flow system 
(figure l b )  in which a mixture of oil (Shellflex 214 BG) and kerosine was used as a 
circulating fluid. This mixture was chosen because it enabled an exact matching of 
the index of refraction to that of Perspex. The oil mixture was kept at a constant 
temperature of 40 "C in order to lower its viscosity ( x 10 cp at 40 "C) and to eliminate 
the influence of ambient temperature variations. Seeding with silicagel (Lichrosorb 
S I - 1 0 0 )  was used to facilitate laser-Doppler measurement. The fluid was pumped out 
of the reservoir by a gear pump into an inlet section, consisting of a circular glass 
pipe of 8.0 mm internal diameter and a length of 0.4 m. This inlet section ensured 
a fully developed parabolic flow pattern a t  the entrance of the bend. Downstream of 
the bend there was another straight circular glass pipe, after which the fluid returned 
to  the reservoir through a rotameter, which was used for monitoring the flow. The 
Reynolds number of the flow, based upon the mean axial entrance velocity W, and 
the pipe diameter 2a(Re = 2aW,/v), was kept at 700 to within an estimated error 
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of 3%. This yields a corresponding Dean number K = Re& x 286. The velocity 
components were measured by a laser-Doppler anemometer based upon the reference- 
beam method. A 5 mW He-Ne laser produces a laser beam which is split in two beams 
of equal intensity. The reference beam is led through a Bragg cell in which a frequency 
shift is introduced. A lens with a focal length of 80 mm intersects the two beams 
within the bend. The measuring volume is an ellipsoid with a length of 0.47 mm and 
a diameter of 0.06 mm. It could be placed at any desired location within the model 
by traversing the model by means of three stepper motors, enabling a smallest 
possible traversing distance of 0.016 mm. A photodetector measures the intensity of 
the light in the direction of the reference beam. The output signal of this detector 
is further processed by a frequency tracker (DISA55N20) and a 12-bit analog- 
to-digital converter. A microcomputer controls data acquisition as well as the 
traversing of the model by the stepper motors and the data transfer to a mini 
computer (PRIME 750). 

Within a cross-section perpendicular to the axis of the bend non-dimensional 
Cartesian coordinates (x, y) = (x’/a, y’/a) are defined (figure 1 c). The positive x-axis 
is directed towards the outside of the bend. The axial distance from the inlet is 
expressed in terms of the non-dimensional variable z = RB/(uR)t, in which (aR): is 
a characteristic distance for the development of the flow (Olson & Snyder 1983). The 
velocity components (vi, v&, v;) are made non-dimensional by dividing them by the 
mean entrance velocity W-,, yielding (vz, vy, vz). 

Velocity measurements were performed at seven axial stations in the bend: z = 0, 
0.2, 0.5, 1.0, 1.7,  2.5 and 3.5 (corresponding to B = 0, 4.6, 11.7, 23.4, 39.8, 58.5 and 
81.9’, respectively). The axial position was accurate up to an estimated error of 0.03. 
The velocity components were measured in a rectangular grid in one-half of the 
cross-section along lines parallel to the plane of symmetry. The measuring locations 
were situated at a distance of 1/8 from each other in both the x- and y-direction. While 
measuring the z- and z-component of velocity the optical axis of the anemometer was 
positioned perpendicular to the plane of symmetry. In this situation the measuring 
volume could be positioned at the first point of the grid (x, y) = (1 .O, 0) within an error 
(Ax, Ay) = (0.0125,0.025). While measuring the y-component of velocity the optical 
axis was situated in the x-direction, with a corresponding positioning error (Ax, Ay) 
of (0.025,0.0125). The velocity was determined out of 20 samples of 25 ps duration 
each, taken over a period of 20 s. Calculation of the 95 % probability intervals for 
axial (secondary) velocities yields an estimated error in these velocities of 1 % (5 yo). 
In addition to this error the measured secondary velocity a t  a certain point may 
contain a contribution of about 2 yo of the corresponding axial velocity at  that point, 
due to a possible misalignment of the plane of the lases beams and the velocity 
component to be measured. Furthermore some velocity smearing and averaging over 
the probe volume will have been present. This effect is of particular importance in 
regions where high velocity gradients are present, for example when measuring axial 
velocities near the outer wall (a = K )  or the x-component of secondary velocity near 
the upper wall (a = in). For further processing, the velocity data were converted from 
the measuring grid to a grid in which the pipe wall was incorporated. Measuring points 
within the bend were left unchanged, as shown in figure 1 ( d ) .  Although, owing to the 
extent of the measuring volume, measured velocities near the pipe wall are less 
reliable, these points too were maintained in the new grid. After conversion the data 
were finally processed into velocity profiles, isovelocity contours and vector plots. 
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FIGIJRE 2. Development of the axial flow in the plane of symmetry; 6 = 1/6, Re = 700, K = 286. 

3. Results 
3.1. Axial velocities 

The development of the axial flow in the plane of symmetry is shown in figure 2. I n  
the velocity profiles at z = 0, 0.2 and 0.5 hardly any influence of the curvature is 
visible. Further downstream the maximum of axial velocity has shifted towards the 
outer bend. Near thc inner bend a region of relatively low axial velocity has appeared. 
At z = 2.5 this region has developed into a plateau, in which the axial velocity is 
approximately constant, stretching from the centre of the tube towards the inner wall 
up to x NN -0.6. At z = 3.5 the plateau has disappeared again and a local minimum 
in the axial velocity is present a t  the tube centre. 

A more complete picture of the axial flow development is given in figure 3, in which 
the flow field is represented by isovelocity contours. These contours were obtained 
by linear interpolation of the velocity data. The original contours are given, as 
smoothing may lead to  loss of information. Near the tube wall the position of the 
contours depends heavily on the relative position of the measuring point with regard 
to the wall, particularly when high velocity gradients are present. 

From figure 3 it is observed that the parabolic velocity profile persists a t  the first 
three axial stations, despite the clear presence of a secondary flow (which will be 
shown later). At z = 1 .O the contours have shifted towards the outer bend, becoming 
elliptic in shape. The axial wall shear has increased in the outer half of the bend 
(-in < a < in), while i t  has decreased in the inner half. This development of the axial 
wall shear has continued a t  z = 1.7. The maximum of axial velocity has shifted 
further towards the outer wall, while a region of relative low axial velocity has 
appeared near the inner wall. The isovelocity contours have become C-shaped. At 
z = 2.5 the region of low axial velocity has expanded from the inner wall along the 
plane of symmetry towards the centre of the tube. Within a region 0 < y < 0.2, 
z < 0.2 the axial velocity is less than 0.8. I n  the inner half of the bend, the isovelocity 
contours turn back towards the plane of symmetry. At the last station ( z  = 3.5) this 
process has continued : along lines parallel to the plane of symmetry double-peaked 
axial velocity profiles are measured up to y x 0.6. At the centre of the tube a 
local minimum (v, < 0.8) in axial velocity has appeared, while near the inner wall the 
axial velocity has increased again. I n  the outer half of the bend the isovelocity 
contours are directed perpendicular to  the plane of symmetry for y < 0.4. 

3.2. Secondary velocities 
In figure 4 (a,b) the development of the x-  and y-velocity component of the secondary 
flow is shown. These data are combined into an overall view of the flow in figure 5. 
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FIGURE 3. Development of the axial flow represented by isovelocity contours; 
S = 116, Re = 700, K = 286; 0, outer bend; I, inner bend. 

At the first axial station the secondary flow is completely directed towards the inner 
wall. The v, has its maximum v,, max w 0.07 along the line x = 0. The maximum 
estimated error in v, is about 0.04 (w 2 yo of the local axial velocity) which means 
that, although the magnitude of vz is quite uncertain, the measured direction of the 
flow is correct. The oy differs from zero only near the inner and outer wall, where 
vy, miLX x 0.025. The point where vy = 0 is situated at x = 0 near the upper wall, but 
it shifts towards the outer wall as y decreases. 

At z = 0.2 the vector plot shows a vortex with its centre at (xc, y,) x (0.2,0.6). Near 
the plane of symmetry the flow is directed from the inner bend towards the outer 
bend. From the outer bend the fluid flows circumferentially back to the inner bend, 
through a layer of about 0.4~ in width. Compared with z = 0 the magnitude of ox 
has remained the same, but the magnitude of vy has doubled, while maintaining its 
pattern. At the next axial station ( z  = 0.5) the vortex has intensified. Its centre is 
located at (0,0.65). The secondary flow pattern is symmetric with respect to  the line 
x = 0, except for v, in a region near the upper wall. I n  this layer of circumferential 
flow towards the inner bend, vx reaches its maximum of 0.15 in the outer half of 
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FIGURE 4. Development of the secondary flow; ( a )  2-component of secondary velocity; 
( b )  y-component of secondary velocity; 8 = 1/6, Re = 700, K = 286. The distance between two 
adjacent z- or y-positions, at which the profiles are given, corresponds to a velocity of 0.3W0. 
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FIGURE 5. Development of the secondary flow represented by vector plots; 
8 = 116, Re = 700, K = 286. 

the bend. The layer width has decreased to 0 . 3 ~ .  Near the plane of symmetry 
v,, max x 0.25. The maximum v y  is measured to be 0.08. 

At z = 1 .O the highest secondary velocities are found in the outer half of the bend. 
The vortex centre has moved to (0,0.85). I n  the plane of symmetry v, has increased 
up to a maximum of 0.43. I n  the layer near the upper wall the maximum magnitude 
of v, is 0.31. This layer of negative v, has narrowed to approximately 0 . 2 5 ~ .  The 
maximum v y  (x 0.20) is found near the outer wall a t  y = 0.5. The line wy = 0 now 
lies in the inner half of the bend, in contrast to  the situation at z = 0. At the next 
measuring station ( z  = 1.7) the vortex centre has moved to  (0.1,0.65). A decrease of 
v, near the plane of symmetry (wz, max x 0.31) and an increase of this velocity 
component in the layer near the upper wall (v,, max x 0.43) is observed. The width 
of this layer has increased to  about 0.4a. At x = -0.75 very small values for vz are 
measured. I n  the outer half of the bend vy, max is measured to be 0.22, while in the 
inner half i t  reaches a maximum of 0.27. The region of positive vy has expanded 
towards the inner bend. 

At z = 2.5 the vortex centre lies a t  (0.3,0.45). The highest secondary velocities now 
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appear at the inner half of the bend, although the region of low secondary velocities 
near the plane of symmetry persists. Near the plane of symmetry v, has decreased 
further. For - 1 < x < 0 the maximum in vz has shifted from the plane of symmetry 
towards the upper wall. The region of negative vz near the upper wall has grown, 
particularly in the inner half of the bend. Here vz, max z 0.33. The vy also reaches 
its maximum (0.23) near the inner bend. The vy profiles show a dip in the outer half 
of the bend. At the last station ( z  = 3.5) the vortex has developed a ‘tail’ towards 
the upper wall, following the wall towards the outside of the bend. The secondary 
flow has sharply decreased. The circumferential flow along the upper wall has almost 
disappeared (vz, max x 0.07 here). The flow from the inner wall towards the outer wall 
has shifted away from the plane of symmetry, especially for 0 < x < 0.75. For 
z = 0.75 vz hardly differs from zero. The dip in the vy profiles, that appeared a t  
z = 2.5, now has developed into an additional region of negative vy. The maximum 
vy  ( z 0.15) is measured in the inner half of the bend. 

3.3. Description of the $ow field 
We shall now combine the results of the velocity measurements in order to  give a 
coherent description of the flow field in the entire bend. The presence of a secondary 
flow a t  z = 0 indicates an upstream effect of the bend. The direction of the flow, from 
the inner bend towards the outer bend across the entire cross-section, is not explained 
yet. Neither has this effect, as far as known to us, been reported in literature. At 
z = 0.2 a vortex pattern is observed that can be explained by the interaction of 
inertial, centrifugal and viscous forces, as described by Berger, Talbot & Yao (1983). 
As the fluid enters the bend it will experience a centrifugal force because of its change 
in direction. This force induces a pressure-gradient force directed towards the centre 
of curvature. I n  the central core, where the axial velocities are high, the centrifugal 
force will dominate the pressure force resulting in an outward motion of the fluid. 
Near the pipe wall the situation is reversed because of the low axial velocities here; 
the dominating pressure force will induce a circumferential inward motion of the 
fluid. 

Although the secondary flow has intensified a t  z = 0.5, the axial flow pattern still 
does not show any changes : i t  is apparently still dominated by inertial forces. In  the 
axial flow pattern at z = 1 .O the influence of the secondary flow in the core is visible 
for the first time from the shift of the point of maximum axial velocity towards the 
outer bend. At this point the secondary flow near the plane of symmetry has reached 
its maximum, whereas near the pipe wall this flow increases further, as can be seen 
a t  z = 1.7. Here the point of maximum circumferential flow has shifted towards the 
inner bend. The observed deformation of the isovelocity contours might be caused 
by the transport of fluid by the circumferential secondary flow. Probably, the fluid 
with a low axial velocity, that initially found itself near the upper wall, is now situated 
near the inner wall. At z = 2.5 the axial velocity pattern has changed mainly a t  
the inner half of the pipe, where relatively high secondary velocities are present. The 
secondary flow causes increasing curvature of the isovelocity contours. Moreover the 
secondary flow near the plane of symmetry leads to the expansion of the region of 
low axial velocity towards the centre of the tube. A t  the last axial station this 
region has expanded from the centre towards the upper wall. This agrees with the 
direction of the secondary flow. Near the inner wall the axial velocities have now 
increased again. Apparently the fluid that was near the pipe wall at the entrance, 
with a low axial velocity, has now all been swept together into the centre of the pipe. 
In this picture, the fluid that is now conveyed to t,he inner wall was originally in the 
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FIGURE 6. First moment of axial velocity ( X l a )  versus entrance length Lla = RB/a; 0, our 
measurements, 6 = 116, Re = 700,~ = 286; ---, ( X l a )  = (is) (L /a )2 ,  derived from Smith (1976); 
Other symbols refer to data of Olson & Snyder (1985): parabolic entry profile: A, 
6 = 114.66, Re = 300; A, 6 = 114.66, Re = 1100; ., 6 = 118.0, Re = 300; 0, 6 = 118.0, 
Re = 1100; uniform entry profile: 1 ,  ( X l a )  for ‘high’ Re; 2, ( X / a )  for ‘low’ Re. 

centre of the tube, with a high axial velocity. During the transport through the 
secondary boundary layer these high axial velocities have been reduced by viscous 
forces, but apparently this distance was too short to reduce the velocities t o  the 
velocity level of the fluid in the centre of the tube. 

I n  the foregoing no attention has been paid to  the question of whether separation 
of the secondary boundary layer does occur near the inner wall. Agrawal et al. (1978) 
conclude from their measurements of the x-component of secondary velocity, that 
separation may occur there, where a combination of a vanishing v, near the inner wall 
and a shift of the maximum w, from the plane of symmetry towards the upper wall 
is found. Soh & Berger (1984) suggest that separation occurs if the angle amax, where 
the maximum tangential velocity is found, has shifted so close to  the inner bend that 
the secondary flow does not have sufficient distance to turn smoothly at the inner 
bend, while remaining attached to the inner wall. This combination of factors does 
indeed apply to our measurements at z = 1.7, 2.5 and 3.5, with the exception of the 
measured v, at z = 2.5,x= -0.75. 

Apart from the qualitative treatment of the measurements a more quantitative 
description of the flow field was undertaken. For example the axial velocity profile 
may be quantified by its first moment ( X l a ) ,  defined by Olson & Snyder (1985): 

JI s: (v, x) r dr  da 

( X l a )  = (1) 
v,rdrda ’ 

in which r = (x2+y2)f. 
Figure 6 shows that ( X l a )  is slightly negative a t  the first three axial stations, after 

which it increases sharply up to  a maximum value ( X / a )  z 0.16 at z = 1.7. This 
indicates a shift of the axial flow towards the inner bend for z < 0.5, which agrees 
with the measured direction of the secondary flow at z = 0. The shift of axial flow 
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FIGURE 7. Coefficients ai when developing the axial velocity field in the plane of symmetry into 
a Fourier series. 0,  our measurements, 6 = 1/6, Re = 7 0 0 , ~  = 286; parabolic (A)- and uniform 
(0)-entry-profile values derived from Olson (1971) for 6 = 1/4.66, Re = 540, K = 250. 

towards the inner bend is followed by an overshoot towards the outer bend a t  z = 1.7. 
Olson & Snyder conclude that ( X / a )  develops on an axial scale a for both uniform 
and parabolic inlet profiles. I n  the uniform-entry case they find a monotonic increase 
of ( X l a )  for increasing Lla,  in contrast to  the situation for a parabolic entry profile. 
There is some qualitative agreement between our results and Olson & Snyder’s data 
for a parabolic entry profile, although in our case the maximum ( X l a )  is larger and 
reached earlier. 

Another way of quantifying the axial flow field lies in developing the axial velocity 
profile in the plane of symmetry vz(z) into a Fourier series: 
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FIGURE 8. Development of the mean axial vorticity: (a) in central core: [;! = E d :  0,  our 
measurements, 6 = 1/6, Re = 700,~ = 286; ---, 5, = (16/3x)S(L/a) derived from Smith (1976); 
-, general development for 'low' K (Olson & Snyder 1985). (b)  on maximum circulation path: 
5' = E(Re)$: [,,,(O) and .Ebl(.) as calculated from our measurements; -, general development 
of &,,,, (Olson & Snyder 1985). 

z 

The Fourier functions for - 1 < x < 1, being zero at  x = 1, x= - 1, are defined as 

1 (3) 
f,,+,(x) = cos(;(212+ l))nx, n = 0,1,  ..., 

12 = 1,2,  ..., f,,(x) = sin (nnx), 

The approximation by a series up to the 6th degree already gave a reasonable fit : 
the standard deviation reached a maximum of 0.088 for the profile at z = 2.5. The 
coefficients a( arc displayed in figure 7. This figure also shows data derived from Olson 
(1971) for a parabolic and a uniform entry profile. Our data agree quite well with 
Olson's data for a parabolic entry profile, whereas the main differences with the 
uniform entry profile appear in a1 and as. 
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Finally, the secondary flow field is quantified by its mean axial vorticity <, defined 
as (Olson & Snyder 1985) 

where S is taken in a plane of constant z ,  surrounding a region with surface A .  Taking 
S along the plane of symmetry and the uppcr pipe wall we find the vorticity <, in 
the central core. In  fact 6, quantifies the x-velocities in the plane of symmetry. Figure 
8 ( a )  shows that in our case with a parabolic entry profile the maximum tc is larger 
and reached earlier than in Olson's case with a uniform entry profile. The decrease of 
EC a t  the last two axial stations is primarily caused by the decrease of the total 
secondary flow. Further downstream the additional effect of the shift of the maximum 
velocity in the 2-direction away from the plane of symmetry plays a role. In  figure 
8 (b )  the vorticity on a path of maximum circulation is presented. The quantity Ern,, 
was calculated along a path S consisting of a semicircle in the upper half of the bend, 
closing the loop along the plane of symmetry. The maximum vorticity in the 
boundary layer tb, was also calculated along a semicircle, but here the loop was 
completed along the pipe wall. I n  both cases maximum circulation r was found by 
varying the radius of the semicircle. According to  Olson & Snyder (1985) these 
quantities are best correlated by a lengthscale (all):. t,,, and t,, appear to  be closely 
coupled, tbl being about three times as large as Em,,. While maximum <, was found 
a t  z = 1.0, in this case maximum vorticities are found at z = 1.7. The latter 
corresponds well with the general finding of Olson & Snyder (1983, 1985) that 
maximum vorticity occurs a t  z x 2. The sharp decrease of vorticity for z > 2 in our 
measurements is probably caused by the straight pipe following the bend at  0 = 90". 

4. Discussion 
I n  the present paper a detailed description is given of the axial and secondary fluid 

velocities in a 90" bend, with a high curvature ratio and a parabolic entry profile. 
Although the effect of curvature is hardly visible in the isovelocity contours a t  z = 0, 
0.2 and 0.5, the first moment of axial velocity ( X / a )  reveals an inward shift of the 
axial velocity field in the entrance region. The measured secondary flow at z = 0 was 
directed towards the inner bend across the entire cross-section. Both these effects 
indicate an upstream effect of the curvature. The development of the axial flow field 
for z 2 1.0, showing the C-shaped isovelocity contours that have also been observed 
by other investigators (for example Agrawal et al. 1978 and Olson & Snyder 1985), 
is quite well explained from the shape of the secondary velocity field. The basic vortex 
shape of the secondary flow field, measured for z 2 0.2, can be explained from the 
interaction of inertial, centrifugal and viscous forces. A more detailed view of this 
vortex reveals features that are not yet explained, like the shift of the vortex centre 
and the development of a ' tail '. 

Our results may be compared with the theoretical results of Smith (1976), who 
studied the flow development in a straight pipe followed by a curved pipe a t  z = 0. 
Applying perturbation theory of O(S) to the oncoming flow, Smith finds no 
disturbance of the inviscid core for z < 0. I n  the boundary layer however, an 
upstream response is found, showing a rise of pressure near the outer bend (a = 0 )  
and a pressure fall at the inner bend (a = n), inducing a secondary flow towards the 
inner bend and an increase of axial shear at that position. We find an upstream 
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response too, although in our measurements the secondary flow towards the inner 
bend stretch over the entire cross-section. 

For R8/a  = 0(1) Smith does find a perturbation of the core flow, which applied 
to our situation with a parabolic entry profile and S = 116 yields ( z  = O(&))  

I v, = 2&2(1 -r2), 
v y  = 0, 
v, = 2( 1 - r 2 )  + 2xz2. 

(5) 

The relationship for v, shows an  (1 -r2)-dependence, which is also observed in our 
measurements. The magnitude of v, is overestimated by (5) ,  as is apparent also from 
the values of EC, calculated from (5) for - 1 < x < 1 and given in figure 8(a ) .  The 
z-dependence cannot be checked from our measurements. I n  his O(6)-solution Smith 
finds no vy in the core, whereas we measure a vy that  is very much smaller than the 
v, disturbance. The secondary flow towards the outer bend causes axial shear stress 
to rise there, and a crossover of maximum axial shear towards the outer bend is found 
by Smith at a downstream distance Rela = 1.51, z x 0.62, which is in agreement with 
our findings. The perturbation of the axial velocity field results in a first moment 
( X l a ) ,  calculated over 0 < r < 1, being positive and proportional to  z2, as shown in 
figure 6. This does not agree with our observation of an inward shift of the axial 
velocity field. The secondary flow in the boundary layer is directed azimuthally 
towards the inner bend, thus completing the familiar vortex pattern. 

Other analyses, available from literature, of the steady laminar entry flow in a 
curved tube of relative high curvature ratio almost always deal with uniform 
entry flow. Bearing in mind the difference in entry velocity profile, our results may 
be compared with the experimental uniform-entry-profile results of Agrawal 
etal. (1978) for S = Q, Re = 3 6 5 , ~  = 183, and Olson & Snyder (1985) for 
S = Q, Re = 1100, K = 390. The calculated uniform-entry-profile results of Soh & 
Berger (1984) for S = $,Re = 484, K = 183, will also be used for comparison. I n  the 
axial flow field in the uniform-entry case a shift of the maximum axial velocity 
towards the inner bend is observed for z < 1.5, in contrast to the situation with a 
parabolic entry flow. Further downstream this maximum shifts towards the outer 
bend, although for z < 3.5 the differences between the two entry cases are still 
considerable. The secondary flow with a uniform entry profile is more or less 
dominated by the build-up of an axial boundary layer, appearing from a radial inward 
secondary motion. This pattern occurs for z < 0.5. Further downstream both 
entry-profile cases show approximately the same secondary flow pattern. For z = 1 .O 
in our results the v, appears to be larger in the central core than near the upper wall, 
while in the uniform-entry case the situation is reversed. For z = 1.7 and 2.5 the 
results in both entry-flow cases agree quite well, although Agrawal finds a secondary 
boundary layer near the upper wall that  is quite thin compared with the other results. 
At z = 3.5 we find relatively small secondary velocities, compared with results from 
literature. Probably this is caused by the upstream effect of the straight pipe following 
the bend at 8 = 90". The shape of the vortex, showing a tail towards the outer bend, 
is quite different from the shape Soh & Berger find for 6 = +, K = 183. In  fact i t  does 
agree better with the vortex that they compute for 6 = 4, K = 680. 

The results of the various investigations are also compared by quantitative 
analyses. Olson & Snydcr (1985) use the first moment ( X l a )  to  quantify the axial 
flow, whereas in this paper the Fourier analysis of the axial velocity profile in the 
plane of symmetry is introduced. The observed differences between our and Olson's 
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data with regard to the first moment are remarkable and as yet unexplained, but 
the agreement between the Fourier coefficients of the axial velocity profiles in the 
plane of symmetry is quite satisfactory. Besides, the mean axial vorticity 6 in each 
cross-section, introduced by Olson & Snyder (1985) to  characterize the secondary 
flow field, shows a good resemblance with our data. 

We wish to  thank I r  J. A. W. M. Corver for his support in the initial phase of this 
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